Electrostatics · Capacitors · Current
Page I — III
Electrostatics
Coulomb's Law & Electric Field
Coulomb's Law
$F = \dfrac{1}{4\pi\varepsilon_0}\dfrac{q_1 q_2}{r^2}$
Electric field
$E = \dfrac{F}{q}$
Point charge
$E = \dfrac{1}{4\pi\varepsilon_0}\dfrac{q}{r^2}$
Potential
$V = \dfrac{1}{4\pi\varepsilon_0}\dfrac{q}{r}$
Relation
$E = -\dfrac{dV}{dr}$
Electric Dipole
Dipole moment
$p = q(2a)$
Axial field
$E = \dfrac{1}{4\pi\varepsilon_0}\dfrac{2p}{r^3}$
Equatorial field
$E = \dfrac{1}{4\pi\varepsilon_0}\dfrac{p}{r^3}$
Torque
$\tau = pE\sin\theta$
Potential energy
$U = -pE\cos\theta$
Gauss's Law
Gauss's Law
$\displaystyle\oint \vec{E} \cdot d\vec{A} = \dfrac{q_{\text{enc}}}{\varepsilon_0}$
Infinite line charge
$E = \dfrac{\lambda}{2\pi\varepsilon_0 r}$
Infinite plane sheet
$E = \dfrac{\sigma}{2\varepsilon_0}$
Inside conductor
$E = 0$
Capacitors
Capacitance
$C = \dfrac{Q}{V}$
Parallel plate
$C = \dfrac{\varepsilon_0 A}{d}$
With dielectric
$C = \dfrac{K\varepsilon_0 A}{d}$
Energy stored
$U = \tfrac{1}{2}CV^2 = \tfrac{1}{2}QV = \dfrac{Q^2}{2C}$
Series
$\dfrac{1}{C} = \dfrac{1}{C_1} + \dfrac{1}{C_2}$
Parallel
$C = C_1 + C_2$
Current Electricity
Current
$I = \dfrac{Q}{t}$
Drift velocity
$I = nqAv_d$
Ohm's Law
$V = IR$
Resistance
$R = \rho\dfrac{l}{A}$
Temp. dependence
$R = R_0(1 + \alpha\Delta T)$
Power
$P = VI = I^2R = \dfrac{V^2}{R}$
Kirchhoff's Laws & Wheatstone Bridge
Junction rule
$\sum I = 0$
Loop rule
$\sum V = 0$
Wheatstone
(balanced)
$\dfrac{P}{Q} = \dfrac{R}{S}$
Magnetism · EMI · Alternating Current
Page II — III
Magnetic Field
Biot–Savart Law
$dB = \dfrac{\mu_0}{4\pi}\dfrac{I\,dl\sin\theta}{r^2}$
Long straight wire
$B = \dfrac{\mu_0 I}{2\pi r}$
Circular loop
(center)
$B = \dfrac{\mu_0 I}{2R}$
Solenoid
$B = \mu_0 n I$
Magnetic Force
On moving charge
$F = qvB\sin\theta$
On conductor
$F = BIL\sin\theta$
Circular motion radius
$r = \dfrac{mv}{qB}$
Cyclotron frequency
$f = \dfrac{qB}{2\pi m}$
Electromagnetic Induction
Magnetic flux
$\Phi = BA\cos\theta$
Faraday's Law
$\mathcal{E} = -\dfrac{d\Phi}{dt}$
Lenz's Law → Induced EMF opposes the change in flux that causes it.
Self inductance
$\mathcal{E} = -L\dfrac{dI}{dt}$
Energy in inductor
$U = \dfrac{1}{2}LI^2$
Alternating Current
EMF & RMS Values
AC EMF
$\mathcal{E} = \mathcal{E}_0 \sin\omega t$
Angular freq.
$\omega = 2\pi f$
RMS current
$I_{\text{rms}} = \dfrac{I_0}{\sqrt{2}}$
RMS voltage
$V_{\text{rms}} = \dfrac{V_0}{\sqrt{2}}$
Reactance, Impedance & Resonance
Inductive reactance
$X_L = \omega L$
Capacitive reactance
$X_C = \dfrac{1}{\omega C}$
Impedance
$Z = \sqrt{R^2 + (X_L - X_C)^2}$
Resonance condition
$X_L = X_C$
Resonant frequency
$f = \dfrac{1}{2\pi\sqrt{LC}}$
Optics · Modern Physics · Semiconductors
Page III — III
Ray Optics
Mirror formula
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$
Magnification
$m = \dfrac{v}{u}$
Lens formula
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
Lens maker's eq.
$\dfrac{1}{f} = (\mu - 1)\!\left(\dfrac{1}{R_1} - \dfrac{1}{R_2}\right)$
Power of lens
$P = \dfrac{1}{f}$
Combined power
$P = P_1 + P_2$
Wave Optics
Young's Double Slit Experiment
Fringe width
$\beta = \dfrac{\lambda D}{d}$
n-th bright fringe
$y_n = n\beta$
Single Slit Diffraction
Minima condition
$a\sin\theta = n\lambda$
Photoelectric Effect
Einstein eq.
$h\nu = W_0 + KE_{\max}$
KE max
$KE_{\max} = \tfrac{1}{2}mv^2$
Stopping pot.
$eV_0 = KE_{\max}$
Bohr's Atomic Model
Bohr radius
$r_n = \dfrac{n^2 h^2 \varepsilon_0}{\pi m e^2}$
Energy level
$E_n = -\dfrac{13.6}{n^2}\;\text{eV}$
Wavelength
$\dfrac{1}{\lambda} = R\!\left(\dfrac{1}{n_1^2} - \dfrac{1}{n_2^2}\right)$
Nuclei
Binding energy
$BE = \Delta m \cdot c^2$
Radioactive decay
$N = N_0\, e^{-\lambda t}$
Half-life
$T_{1/2} = \dfrac{0.693}{\lambda}$
Semiconductor
Diode current
$I = I_0\!\left(e^{V/\eta V_T} - 1\right)$
Zener breakdown → Voltage regulation in reverse bias.
Logic Gates
AND
Output 1 only if all inputs are 1
OR
Output 1 if any input is 1
NOT
Output is the complement of input